Abstract
Nd 60Fe 30Al 10 alloys were rapidly quenched by the melt-spinning technique with different wheel surface speeds ranging from 5 to 30 m/s. The microstructure and the magnetic properties were strongly dependent on the quenching rate. A high quenching rate led to an amorphous structure with a low coercivity at room temperature, while a mixture of amorphous and crystalline phases was found after melt-spinning at 5 m/s, which exhibited hard magnetic properties at room temperature. For both the ribbons melt-spun at 5 and 30 m/s respectively, coercivity increased with decreasing temperature and reached a maximum at around 50 K. Maximum magnetization at 10 T increased dramatically at low temperature. Our magnetic study has shown that the presence of crystalline Nd was responsible for the increase of magnetization and the decrease of coercivity, as Nd became magnetically ordered at low temperatures. The Mössbauer study has shown that the magnetic microstructures of melt-spun ribbons were not uniform, as the spectra needed to be fitted by magnetic and non-magnetic components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.