Abstract

Experiments of cell migration and chemotaxis assays have been classically performed in the so-called Boyden Chambers. A recent technology, xCELLigence Real Time Cell Analysis, is now allowing to monitor the cell migration in real time. This technology measures impedance changes caused by the gradual increase of electrode surface occupation by cells during the course of time and provide a Cell Index which is proportional to cellular morphology, spreading, ruffling and adhesion quality as well as cell number. In this paper we propose a macroscopic mathematical model, based on advection-reaction-diffusion partial differential equations, describing the cell migration assay using the real-time technology. We carried out numerical simulations to compare simulated model dynamics with data of observed biological experiments on three different cell lines and in two experimental settings: absence of chemotactic signals (basal migration) and presence of a chemoattractant. Overall we conclude that our minimal mathematical model is able to describe the phenomenon in the real time scale and numerical results show a good agreement with the experimental evidences.

Highlights

  • Despite significant progress regarding potential therapeutic targets aimed at improving survival, patients affected by solid tumours frequently die for systemic spread of the disease to distant sides

  • The development of metastases requires the activation of a series of physiological and biochemical processes that govern the migration of tumour cells from the primary tumour site, the invasion through the basement membrane, the entry of metastatic cells into the blood vessels and localization to the second site [1]

  • Targeting cell motility has been increasingly accepted as a new approach for the clinical management of metastatic patients and in the future, quantitative analysis of the motility of tumour cells derived from cancer patients could provide a new potential parameter predictive of patient outcomes

Read more

Summary

Introduction

Despite significant progress regarding potential therapeutic targets aimed at improving survival, patients affected by solid tumours frequently die for systemic spread of the disease to distant sides. When cancer cells acquire the ability to separate and move away from the primary tumour mass, migrate through the surrounding tissue, and enter the lymphatic system and/or blood circulation, the prognosis becomes poor. The control of cell motility is a new and attractive approach for the clinical management of metastatic patients. The quantitative assessment of tumour cell migration ability for each patient could provide a new potential parameter predictive of patient outcomes in the future.

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call