Abstract

We simulate pedestrian counterflow by adopting an optimal path-choice strategy and a recently observed speed-density relationship. Although the whole system is symmetric, the simulation demonstrates the segregation and formation of many walking lanes for two groups of pedestrians. The symmetry breaking is most likely triggered by a small numerical viscosity or “noise", and the segregation is associated with the minimization of travel time. The underlying physics can be compared with the “optimal self-organization" mechanism in Helbing's social force model, by which driven entities in an open system tend to minimize their interaction to enable them to reach some ordering state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.