Abstract

We have developed a macroscopic approach to predict electron mobilities and cavity sizes in liquid and supercritical helium using the free-volume concept. We demonstrate very good agreement with experimental electron mobility data and significant improvement with respect to the commonly used ‘bubble’ model, especially for low hydrostatic pressures. The reason for this advancement is the use of heuristically developed thermodynamic state laws that account for the variations with density, temperature, and the isothermal compressibility of dense helium. The state equation uses the scattering length as input and parameters that are adjusted to experimental data. The conventional ‘bubble’ method is based on the surface tension which is not defined for all accessible thermodynamic states. We investigate the limit of very low densities, with Knudsen numbers larger than 1.5. Here, the mobilities predicted by our method coincide well with experimental data until the mobility diverges abruptly. This behaviour is interpreted as a cross-over from Stokes-flow to gas kinetics behaviour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.