Abstract

A conceptual macrokinetic model of redox sorption on metal–ion exchanger nanocomposites upon electrochemical polarization is formulated and a corresponding mathematical model is constructed. The solution to a multi-point boundary value problem for the concentration of a sorbed substance (oxygen) is given. The concentration front of the sorbed substance is characterized by a concentration gradient in the near-surface layer of the solution, by layers of the products of metal oxidation in the composite forming due to both external and internal diffusion transfer, and by chemical and electrochemical reactions at the interphase boundaries. A considerable reduction in the concentration gradient of the sorbate in layers of the products of oxidation of metal and the growth of the diffusion layer of the solution with polarizing currents weaker than the limiting diffusion current are noted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call