Abstract

A numerical algorithm is presented for the standard model of macroion electrokinetics and certain generalizations of it. The macroion consists of a cylindrical section with identical, hemispheroidal endcaps, each piece having arbitrary length. The system of one macroion and adjoining salt solution is subjected to an arbitrary sequence of pulsed electrical fields and pulsed translational and rotational velocities. Numerical solutions are obtained for the time dependent electrostatic and mobile ion concentration fields and the solvent velocity. From these fields the dielectric response, force, and torque are calculated. Generalizations of the standard model include the diffusive motion of macroion surface charges, partial slip of solvent motion at the macroion surface, and a simple model for the reactive exchange of surface charge with solution ions. The primary illustrative application is to recent measurements of electric birefringence versus applied field frequency for poly-(tetrafluorothylene) colloidal particles, but a few results are presented for the dielectric response of DNA fragments and of spherical colloidal particles. The source code and additional details are provided as supplementary documentation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call