Abstract

We introduce a new numerical approach for the solution of grid-based discretizations of nonlinear elastic models. Our method targets the linearized system of equations within each iteration of the Newton method, and combines elements of a direct factorization scheme with an iterative Conjugate Gradient method. The goal of our hybrid scheme is to inherit as many of the advantages of its constituent approaches, while curtailing several of their respective drawbacks. In particular, our algorithm converges in far fewer iterations than Conjugate Gradients, especially for systems with less-than-ideal conditioning. On the other hand, our approach largely avoids the storage footprint and memory-bound nature of direct methods, such as sparse Cholesky factorization, while offering very direct opportunities for both SIMD and thread-based parallelism. Conceptually, our method aggregates a rectangular neighborhood of grid cells (typically a 16 × 8 × 8 subgrid) into a composite element that we refer to as a Similar to conventional tetrahedral or hexahedral elements, macroblocks receive nodal inputs (e.g., displacements) and compute nodal outputs (e.g., forces). However, this input/output interface now only includes nodes on the boundary of the 16 × 8 × 8 macroblock; interior nodes are always solved exactly, by means of a direct, highly optimized solver. Models built from macroblocks are solved using Conjugate Gradients, which is accelerated due to the reduced number of degrees of freedom and improved robustness against poor conditioning thanks to the direct solver within each macroblock. We explain how we attain these benefits with just a small increase of the per-iteration cost over the simplest traditional solvers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.