Abstract

The coordinate and momentum space configurations of the net baryon number in heavy ion collisions that undergo spinodal decomposition, due to a first-order phase transition, are investigated using state-of-the-art machine-learning methods. Coordinate space clumping, which appears in the spinodal decomposition, leaves strong characteristic imprints on the spatial net density distribution in nearly every event which can be detected by modern machine learning techniques. On the other hand, the corresponding features in the momentum distributions cannot clearly be detected, by the same machine learning methods, in individual events. Only a small subset of events can be systematically differ- entiated if only the momentum space information is available. This is due to the strong similarity of the two event classes, with and without spinodal decomposition. In such sce- narios, conventional event-averaged observables like the baryon number cumulants signal a spinodal non-equilibrium phase transition. Indeed the third-order cumulant, the skewness, does exhibit a peak at the beam energy (Elab = 3–4 A GeV), where the transient hot and dense system created in the heavy ion collision reaches the first-order phase transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.