Abstract
We used surgery durations, patient demographic and personnel data taken from the East Kent Hospitals University NHS Foundation Trust (EKHUFT) over a period of 10 years (2010-2019) for a total of 25,352 patients that underwent 15 highest volume elective orthopedic surgeries, to predict future surgery durations for the subset of elective surgeries under consideration. As part of this study, we compared two different ensemble machine learning methods random forest regression (RF) and XGBoost (eXtreme Gradient Boosting) regression. The two models were approximately 5% superior to the existing model used by the hospital scheduling system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.