Abstract

For accelerating the technology development and facilitating the reliable operation of lithium-ion batteries, accurate prediction for battery cycle life and remaining useful life (RUL) are both critical. However, diverse aging mechanisms, significant device variability and random working conditions have remained challenges. A reasonable description and an effective prediction algorithm are indispensable for achieving accurate prediction results. In this paper, battery terminal voltage, current and temperature curves from several charge cycles and especially their difference between these cycles are first utilized for description of battery cycle life and RUL. Moreover, a hybrid convolutional neural network (CNN), which is based on a fusion of three-dimensional CNN and two-dimensional CNN, is designed for their predictions. The battery charge voltage, current and temperature and their curves are first fused for considering the strong relationships between them. And the features hidden in the curves are extracted and modelled automatically. Furthermore, a feature attention algorithm and a multi-scale cycle attention algorithm are proposed to estimate the relationships between different features and cycles respectively for further heightening the prediction performance. Experiments and comparisons are conducted. The results show that the proposed method is an accurate method for different applications. It achieved 1.1% test error for battery cycle life early prediction of different batteries under different charge policies, and 3.6% for RUL prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.