Abstract

Background and Objective: Coronary artery disease (CAD) is one of the most prevalent causes of death worldwide. The early diagnosis and timely medical care of cardiovascular patients can greatly prevent death and reduce the cost of treatments associated with CAD. In this study, we attempt to prepare a new model for early CAD diagnosis. The proposed model can diagnose CAD based on clinical data and without the use of an invasive procedure. Methods: In this paper, machine-learning (ML) techniques were used for the early detection of CAD, which were applied to a CAD dataset known as Z-Alizadeh Sani. Since this dataset has 54 features, the Pearson correlation feature selection method was conducted to identify the most effective features. Then, six machine learning techniques including decision tree, deep learning, logistic regression, random forest, support vector machine (SVM), and Xgboost were employed based on a semi-random-partitioning framework. Result: Applying Pearson feature selection to the dataset demonstrated that only eight features were the most effective for CAD diagnosis. The results of running the six machine-learning models on the selected features showed that logistic regression and SVM had the same performance with 95.45% accuracy, 95.91% sensitivity, 91.66% specificity, and a 96.90% F1 score. In addition, the ROC curve indicates a similar result regarding the AUC (0.98). Conclusions: Prediction is an important component of medical decision support systems. The results of the present study showed that feature selection has a high impact on machine-learning performance and, regardless of the evaluation metrics of the machine-learning models, determining the effective features is very important. However, SVM and Logistic Regression were designated as the best models according to our selected features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.