Abstract

Cache memories are an essential component of modern processors and consume a large percentage of their power consumption. Its efficacy depends heavily on the memory demands of the software. Thus, finding the optimal cache for a particular program is not a trivial task and usually involves exhaustive simulation. In this article, we propose a machine learning–based methodology that predicts the optimal cache reconfiguration for any given application, based on its dynamic instructions. Our evaluation shows that our methodology reaches 91.1% accuracy. Moreover, an additional experiment shows that only a small portion of the dynamic instructions (10%) suffices to reach 89.71% accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.