Abstract

Abstract The detection of the binary neutron star merger, GW170817, was the first success story of multi-messenger observations of compact binary mergers. The inferred merger rate, along with the increased sensitivity of the ground-based gravitational-wave (GW) network in the present LIGO/Virgo, and future LIGO/Virgo/KAGRA observing runs, strongly hints at detections of binaries that could potentially have an electromagnetic (EM) counterpart. A rapid assessment of properties that could lead to a counterpart is essential to aid time-sensitive follow-up operations, especially robotic telescopes. At minimum, the possibility of counterparts requires a neutron star (NS). Also, the tidal disruption physics is important to determine the remnant matter post-merger, the dynamics of which could result in the counterparts. The main challenge, however, is that the binary system parameters, such as masses and spins estimated from the real-time, GW template-based searches, are often dominated by statistical and systematic errors. Here, we present an approach that uses supervised machine learning to mitigate such selection effects to report the possibility of counterparts based on the presence of an NS component, and the presence of remnant matter post-merger in real time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.