Abstract

Background: Sarcopenic dysphagia, a swallowing disorder caused by sarcopenia, is prevalent in older patients and can cause malnutrition and aspiration pneumonia. This study aimed to develop a simple screening test using image recognition with a low risk of droplet transmission for sarcopenic dysphagia. Methods: Older patients admitted to a post-acute care hospital were enrolled in this cross-sectional study. As a main variable for the development of a screening test, we photographed the anterior neck to analyze the image features of sarcopenic dysphagia. The studied image features included the pixel values and the number of feature points. We constructed screening models using the image features, age, sex, and body mass index. The prediction performance of each model was investigated. Results: A total of 308 patients participated, including 175 (56.82%) patients without dysphagia and 133 (43.18%) with sarcopenic dysphagia. The area under the receiver operating characteristic curve (ROC-AUC), sensitivity, specificity, positive predictive value, negative predictive value, and area under the precision-recall curve (PR-AUC) values of the best model were 0.877, 87.50%, 76.67%, 66.67%, 92.00%, and 0.838, respectively. The model with image features alone showed an ROC-AUC of 0.814 and PR-AUC of 0.726. Conclusions: The screening test for sarcopenic dysphagia using image recognition of neck appearance had high prediction performance.

Highlights

  • Consistent with previous results, our study showed that the neck appearance was significantly associated with sarcopenic dysphagia and contained useful predictive information [17]

  • Its precise validity is unclear, but our results show that the FAST algorithm can be useful for detecting sarcopenia

  • We showed that a machine learning-based screening test using image recognition analysis of the neck appearance is useful for screening for sarcopenic dysphagia, with high prediction performance

Read more

Summary

Introduction

The prevalence of sarcopenic dysphagia among hospitalized older adults has been reported to be 32% in the acute setting and 35% in the post-acute setting [7,8]. Sarcopenic dysphagia, a swallowing disorder caused by sarcopenia, is prevalent in older patients and can cause malnutrition and aspiration pneumonia. This study aimed to develop a simple screening test using image recognition with a low risk of droplet transmission for sarcopenic dysphagia. As a main variable for the development of a screening test, we photographed the anterior neck to analyze the image features of sarcopenic dysphagia. We constructed screening models using the image features, age, sex, and body mass index. Conclusions: The screening test for sarcopenic dysphagia using image recognition of neck appearance had high prediction performance

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.