Abstract

To promptly gain an understanding of disasters as they occur and to draft plans for search and rescue operations, various types of robots are used. Robots not only increase rescue efficiency but also reduce firefighter casualties. Therefore, this study investigated how bionic robots can be utilized to search destroyed and chaotic disaster sites as quickly as possible. However, manually adjusting the motion parameters of robots performing robot motions is extremely inefficient. To resolve this problem, this study used machine learning algorithms to allow robots to train themselves in the environment and autonomously determine their optimal motion parameters. However, many types of machine learning algorithms exist, each with their own strengths and weaknesses. Therefore, this study designed a series of experiments to investigate the features of each algorithm in optimizing the robots’ motions; subsequently, this study compared the strengths and weaknesses of each algorithm based on their performance. The results indicated that for both multipedal and bipedal robots, the use of machine learning to find the optimal motion parameters is both feasible and practical.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.