Abstract

In this paper, analytical functions for the estimation of the temperature-dependent behaviors of poorly and highly dispersed graphene oxide reinforced nanocomposite (GORNC) materials are studied in the framework of a machine learning-based approach. The validity of the presented models is shown comparing the results achieved from this modeling with those reported in the open literature. Also, the application of the obtained functions in solving the thermal buckling problem of beams constructed from such nanocomposites is demonstrated based on an energy-based method incorporated with a shear deformable beam hypothesis. The verification of the results indicates that the presented mechanical model can approximate the buckling behaviors of nanocomposite beams with remarkable precision. It can be realized from the results that the temperature plays an indispensable role in the determination of the buckling load which can be endured by the nanocomposite structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.