Abstract
Existing object recognition techniques often rely on human labeled data conducting to severe limitations to design a fully autonomous machine vision system. In this work, we present an intelligent machine vision system able to learn autonomously individual objects present in real environment. This system relies on salient object detection. In its design, we were inspired by early processing stages of human visual system. In this context we suggest a novel fast algorithm for visually salient object detection, robust to real-world illumination conditions. Then we use it to extract salient objects which can be efficiently used for training the machine learning-based object detection and recognition unit of the proposed system. We provide results of our salient object detection algorithm on MSRA Salient Object Database benchmark comparing its quality with other state-of-the-art approaches. The proposed system has been implemented on a humanoid robot, increasing its autonomy in learning and interaction with humans. We report and discuss the obtained results, validating the proposed concepts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.