Abstract

In this era of technological growth, the diagnosis of diseases and finding cures, personal health parameter management and predicting the possibility of susceptibility to some diseases have become accessible and easy. Although all over the world millions of people are falling victim to diabetes, in most of the cases they are not even aware of their situation due to the silent nature of diabetes. Therefore, the objective of this research is to propose an intelligent system based on a machine learning algorithm to improve the accuracy of predicting diabetes. To attain this objective, an algorithm was proposed based on Naïve Bayes with prior clustering. Second, the performance of the proposed algorithm was evaluated using 532 data related to diabetic patients. Finally, the performance of the existing Naïve Bayes algorithm was compared with the proposed algorithm. The results of the comparative study showed that the improvement in the accuracy has been made apparent for the proposed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.