Abstract

A novel machine-learning-based framework to evaluate the effect of design parameters affected by epistemic uncertainty on the performance of textile antennas is presented in this letter. In particular, epistemic variations are characterized in the framework of possibility theory, which is combined with Bayesian optimization to accurately and efficiently perform uncertainty quantification. A suitable application example validates the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.