Abstract

Anti-patterns are poor solutions to recurring design problems. Several empirical studies have highlighted their negative impact on program comprehension, maintainability, as well as fault-proneness. A variety of detection approaches have been proposed to identify their occurrences in source code. However, these approaches can identify only a subset of the occurrences and report large numbers of false positives and misses. Furthermore, a low agreement is generally observed among different approaches. Recent studies have shown the potential of machine-learning models to improve this situation. However, such algorithms require large sets of manually-produced training-data, which often limits their application in practice.In this paper, we present SMAD (SMart Aggregation of Anti-patterns Detectors), a machine-learning based ensemble method to aggregate various anti-patterns detection approaches on the basis of their internal detection rules. Thus, our method uses several detection tools to produce an improved prediction from a reasonable number of training examples. We implemented SMAD for the detection of two well known anti-patterns: God Class and Feature Envy. With the results of our experiments conducted on eight java projects, we show that: (1) Our method clearly improves the so aggregated tools; (2) SMAD significantly outperforms other ensemble methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.