Abstract
We propose a novel early warning system for detecting financial market crashes that utilizes the information extracted from the shape of financial market movement. Our system incorporates Topological Data Analysis (TDA), a new set of data analytics techniques specialised in profiling the shape of data, into a more traditional machine learning framework. Incorporating TDA leads to substantial improvements in timely detecting the onset of a sharp market decline. Our framework is both able to generate new features and also unlock more value from existing factors. Our results illustrate the importance of understanding the shape of financial market data and suggest that incorporating TDA into a machine learning framework could be beneficial in a number of financial market settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.