Abstract

The physical random access channel (PRACH) in the uplink of cellular systems is used for the initial access requests from users. In fifth generation (5G) systems three different types of services are available, which are massive machine-type communication, enhanced mobile broadband communication, and ultra-reliable low-latency communication. Considering the tight requirements in terms of latency, a robust design of PRACH receiver is one of the priorities. In this paper we first explore the simple extension of a technique proposed for fourth generation (4G) systems to 5G. Then we propose the application of machine learning techniques to make the PRACH receiver more robust to false peaks, which are responsible of performance degradation in the extension of the 4G technique to 5G. Monte Carlo simulations are used to evaluate and compare the performance of the proposed algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.