Abstract
Ground penetrating radar (GPR) is a non-destructive method (NDT) for subsurface object identification. Interpretation of GPR data is often done manually by an engineer, which is a time-intensive task and requires moderate to significant level of training. The authors proposed a novel machine learning based processing for automatic interpretation and quantification of concrete bridge deck GPR B-scan images. The proposed method is based on combination of image processing, machine learning (ML) data classification, data filtering, and spatial pattern analysis for quantification of deterioration in concrete bridge decks. For the first time, the authors introduced a dataset of 4,000 B-scan images cropped from real bridge deck GPR field data, named DECKGPRH1.0. The proposed method is tested on bridge deck GPR data collected from three bridges with different NBI (National Bridge Inventory) ratings. The results presented indicate that by implementing a ML based classifier and a fine tuned filter, the proposed approach provides a robust solution for automatic quantification GPR field data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.