Abstract

Abstract Modern battery systems exhibit a cyber-physical nature due to the extensive use of communication technologies in battery management. This makes modern cyber-physical battery systems vulnerable to cyber threats where an adversary can manipulate sensing and actuation signals to satisfy certain malicious objectives. In this work, we present a machine learning-based approach to enable resilience to adversarial attacks by detecting and estimating the attack and subsequently taking corrective action to mitigate the attack. In particular, we focus on false data injection type attacks on battery systems. The overall diagnostic algorithm consists of an adaptive boosting-based attack detector, a Long Short Term Memory (LSTM) neural network-based attack estimator, and a corrective controller. The proposed algorithm is trained and tested by utilizing data from a complex battery electrochemical battery simulator. Simulation results are presented to verify the effectiveness of the approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.