Abstract
Although it is of scientific and practical importance, the state-of-the-art of predicting the thermal expansion of oxides over broad temperature and composition ranges by physics-based atomistic simulations is currently limited to qualitative agreements. We present an emerging machine learning (ML) approach to accurately predict the thermal expansion of cubic oxides with a dataset consisting of experimentally measured lattice parameters while using the metal cation polyhedron and temperature as descriptors. High-fidelity ML models that can accurately predict temperature- and composition-dependent lattice parameters of cubic oxides with isotropic thermal expansions have been successfully trained. The ML-predicted thermal expansions of oxides not included in the training dataset have shown good agreement with available experiments. The limitations of the current approach and challenges to go beyond cubic oxides with isotropic thermal expansion are also briefly discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.