Abstract
Using a unique harmonized real‐time data set from the COME-HERE longitudinal survey that covers five European countries (France, Germany, Italy, Spain, and Sweden) and applying a non-parametric machine learning model, this paper identifies the main individual and macro-level predictors of self-protecting behaviors against the coronavirus disease 2019 (COVID-19) during the first wave of the pandemic. Exploiting the interpretability of a Random Forest algorithm via Shapely values, we find that a higher regional incidence of COVID-19 triggers higher levels of self-protective behavior, as does a stricter government policy response. The level of individual knowledge about the pandemic, confidence in institutions, and population density also ranks high among the factors that predict self-protecting behaviors. We also identify a steep socioeconomic gradient with lower levels of self-protecting behaviors being associated with lower income and poor housing conditions. Among socio-demographic factors, gender, marital status, age, and region of residence are the main determinants of self-protective measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.