Abstract

Predicting the drilling rate of penetration (ROP) is one approach to optimizing drilling performance. However, as ROP behavior is unique to specific geological conditions its application is not straightforward. Moreover, ROP is typically affected by various operational factors (e.g. bit type, weight-on-bit, rotation rate, etc.) as well as the geological characteristics of the rocks being penetrated. This makes ROP prediction an intricate and multi-faceted problem. Here we compare data mining methods with several machine learning algorithms to evaluate their accuracy and effectiveness in predicting ROP. The algorithms considered are: artificial neural networks (ANN) applying a multi-layer perceptron (MLP); ANN applying a radial basis function (RBF); support vector regression (SVR), and an hybrid MLP trained using a particle swarm optimization algorithm (MLP-PSO). Data preparation prior to executing the algorithms involves applying a Savitzky–Golay (SG) smoothing filter to remove noise from petrophysical well-logs and drilling data from the mud-logs. A genetic algorithm is applied to tune the machine learning algorithms by identifying and ranking the most influential input variables on ROP. This tuning routine identified and selected eight input variables which have the greatest impact on ROP. These are: weight on bit, bit rotational speed, pump flow rate, pump pressure, pore pressure, gamma ray, density log and sonic wave velocity. Results showed that the machine learning algorithms evaluated all predicted ROP accurately. Their performance was improved when applied to filtered data rather than raw well-log data. The MLP-PSO model as a hybrid ANN demonstrated superior accuracy and effectiveness compared to the other ROP-prediction algorithms evaluated, but its performance is rivalled by the SVR model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.