Abstract

The term “fake news” gained international popularity as a result of the 2016 US presidential election campaign. It is related to the practice of spreading false and/or misleading information in order to influence popular opinion. This practice is known as disinformation. It is one of the main weapons used in information warfare, which is listed as an emerging cybersecurity threat. In this paper, we explore “fake news” as a disinformation tool. We survey previous efforts in defining and automating the detection process of “fake news”. We establish a new fluid definition of “fake news” in terms of relative bias and factual accuracy. We devise a novel framework for fake news detection, based on our proposed definition and using a machine learning model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.