Abstract

AbstractWe use a machine learning approach to build a ground motion model (GMM) from a synthetic database of ground motions extracted from the Southern California CyberShake study. An artificial neural network is used to find the optimal weights that best fit the target data (without overfitting), with input parameters chosen to match that of state‐of‐the‐art GMMs. We validate our synthetic‐based GMM with empirically based GMMs derived from the globally based Next Generation Attenuation West2 data set, finding near‐zero median residuals and similar amplitude and trends (with period) of total variability. Additionally, we find that the artificial neural network GMM has similar bias and variability to empirical GMMs from records of the recent Ridgecrest event, which neither GMM has included in its formulation. As simulations continue to better model broadband ground motions, machine learning provides a way to utilize the vast amount of synthetically generated data and guide future parameterization of GMMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.