Abstract
Craters are distinctive features on the surfaces of most terrestrial planets. Craters reveal the relative ages of surface units and provide information on surface geology. Extracting craters is one of the fundamental tasks in planetary research. Although many automated crater detection algorithms have been developed to exact craters from image or topographic data, most of them are applicable only in particular regions, and only a few can be widely used, especially in complex surface settings. In this study, we present a machine learning approach to crater detection from topographic data. This approach includes two steps: detecting square regions which contain one crater with the use of a boosting algorithm and delineating the rims of the crater in each square region by local terrain analysis and circular Hough transform. A new variant of Haar-like features (scaled Haar-like features) is proposed and combined with traditional Haar-like features and local binary pattern features to enhance the performance of the classifier. Experimental results with the use of Mars topographic data demonstrate that the developed approach can significantly decrease the false positive detection rate while maintaining a relatively high true positive detection rate even in challenging sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.