Abstract

The medial septum (MS) is a potential target for modulating hippocampal activity. However, given the multiple cell types involved, the changes in hippocampal neural activity induced by MS stimulation have not yet been fully characterized. We combined MS optogenetic stimulation with local field potential (LFP) recordings from the hippocampus and leveraged machine learning techniques to explore how activating or inhibiting multiple MS neuronal subpopulations using different optical stimulation parameters affects hippocampal LFP biomarkers. First, of the seven different optogenetic viral vectors used for modulating different neuronal subpopulations, only two induced a substantial change in hippocampal LFP. Second, we found hippocampal low-gamma band to be most effectively modulated by the stimulation. Third, the hippocampal biomarkers were sensitive to the optogenetic virus type and the stimulation frequency, establishing those parameters as the critical ones for the regulation of hippocampal biomarker activity. Last, we built a Gaussian process regression model to describe the relationship between stimulation parameters and activity of the biomarker as well as to identify the optimal parameters for biomarker modulation. This new machine learning approach can further our understanding of the effects of neural stimulation and guide the selection of optimal parameters for neural control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.