Abstract

The present study aimed to assess machine learning (ML) models according to radiomic features to predict ototoxicity using auditory brain stem responses (ABRs) in patients with radiation therapy (RT) for head-and-neck cancers. The ABR test was performed on 50 patients having head-and-neck RT. Radiomic features were extracted from the brain stem in computed tomography images to generate a radiomic signature. Moreover, accuracy, sensitivity, specificity, the area under the curve, and mean cross-validation were used to evaluate six different ML models. Out of 50 patients, 21 participants experienced ototoxicity. Furthermore, 140 radiomic features were extracted from the segmented area. Among the six ML models, the Random Forest method with 77% accuracy provided the best result. According to the ML approach, we showed the relatively high prediction power of the radiomic features in radiation-induced ototoxicity. To better predict the outcomes, future studies on a larger number of participants are recommended.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.