Abstract
ABSTRACT This study aimed to develop and validate machine learning models to predict intensities in children and adolescents with cystic fibrosis (CF) across different accelerometry brands and placements. Thirty-five children and adolescents with CF (11.6 ± 2.8 yrs; 15 girls) and 28 healthy youth (12.2 ± 2.7 yrs; 16 girls) performed six activities whilst wearing GENEActivs (both wrists) and ActiGraphs GT9X (both wrists and waist). Three supervised learning classifiers (K-Nearest Neighbour, Random Forest and eXtreme Gradient Boosted Decision Tree) were used to identify the input signal pattern for each PA type and intensity, with a 10-fold cross-validation utilized to assess the performance of the classifiers. ActiGraph GT9X on the dominant wrist and waist and GENEActiv on the dominant wrist failed to predict vigorous intensity PA activities. All other models, for activity type and intensities, exceeded 97% accuracy, with a sensitivity and specificity of greater than 95%, irrespective of accelerometer brand, placement or health condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Measurement in Physical Education and Exercise Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.