Abstract

The knowledge of the simultaneous nodal pressure values in a water distribution network (WDN) can favor its correct management, with advantages for both water utilities and end users, and guarantee higher sustainability in the use of the water resource. However, monitoring pressure in all the nodes is not feasible, so it can be useful to develop methods that allow us to estimate the whole pressure field based on data from a limited number of nodes. For this purpose, the work employed an artificial neural network (ANN) as a machine-learning regression algorithm. Uncertainty of water demand is modeled through scaling laws, linking demand statistics to the number of users served by each node. Three groups of demand scenarios are generated by using a Latin Hypercube Random Sampling with three different cross-correlations matrices of the nodal demands. Each of the corresponding groups of pressure scenarios is employed for the training of an ANN, whose performance parameter is preliminarily used to solve the sampling design for the WDN. Most of the so-derived monitoring nodes coincide in the three cases. The performance of each ANN appears to be strongly influenced by cross-correlation values, with the best results provided by the ANN relating to the most correlated demands.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.