Abstract

Class imbalance has become a big problem that leads to inaccurate traffic classification. Accurate traffic classification of traffic flows helps us in security monitoring, IP management, intrusion detection, etc. To address the traffic classification problem, in literature, machine learning (ML) approaches are widely used. Therefore, in this paper, we also proposed an ML-based hybrid feature selection algorithm named WMI_AUC that make use of two metrics: weighted mutual information (WMI) metric and area under ROC curve (AUC). These metrics select effective features from a traffic flow. However, in order to select robust features from the selected features, we proposed robust features selection algorithm. The proposed approach increases the accuracy of ML classifiers and helps in detecting malicious traffic. We evaluate our work using 11 well-known ML classifiers on the different network environment traces datasets. Experimental results showed that our algorithms achieve more than 95% flow accuracy results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.