Abstract
Attackers are increasingly using Fast Flux Service Networks (FFSNs), networks of compromised machines, to host phishing websites. In FFSNs, the machines rapidly change such that blacklisting them does not entirely stop the networks from operating the websites. This increases the longevity of the websites thus becoming more harmful. Existing solutions for detecting the websites are limited with relatively low or moderate prediction performances, high prediction time and use of less diversified features which increases their susceptibility to detection evasions. This paper proposes a Machine Learning (ML) based approach for detecting phishing websites hosted in FFSNs using a novel set of 56 features. Compared with previous works, the approach achieves high accuracy, a low detection time and uses highly diversified features to enhance resilience to detection evasion. The effectiveness of the features for prediction was evaluated in the context of binary and multi-class classification tasks using multiple traditional and deep learning ML algorithms. The proposed approach achieves an accuracy of 98.42% and 97.81% for binary and multi-class classification tasks respectively. Our results showed that temporal and DNS based features are the strongest predictors while network and host related features are the weakest. Our approach is a significant step towards tracking of core components of FFSNs with an aim of shutting down the entire phishing ecosystem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Information Security and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.