Abstract

This paper presents a novel and automatic artificial-intelligence (AI) method for grape-bunch detection from RGB images. It mainly consists of a cascade of support vector machine (SVM)-based classifiers that rely on visual contrast-based features that, in turn, are defined according to grape bunch color visual perception. Due to some principles of opponent color theory and proper visual contrast measures, a precise estimate of grape bunches is achieved. Extensive experimental results show that the proposed method is able to accurately segment grapes even in uncontrolled acquisition conditions and with limited computational load. Finally, such an approach requires a very small number of training samples, making it appropriate for onsite and real-time applications that are implementable on smart devices, usable and even set up by winemakers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.