Abstract
Side-channel attacks challenge the security of cryptographic devices. A widespread countermeasure against these attacks is the masking approach. Masking combines sensitive variables with secret random values to reduce its leakage. In 2012, Nassar et al. (DATE, pp 1173–1178. IEEE, 2012) presented a new lightweight (low-cost) boolean masking countermeasure to protect the implementation of the Advanced Encryption Standard (AES) block-cipher. This masking scheme represents the target algorithm of the DPAContest V4 (http://www.dpacontest.org/home/, 2013). In this paper, we present the first machine learning attack against a specific masking countermeasure (more precisely the low-entropy boolean masking countermeasure of Nassar et al.), using the dataset of the DPAContest V4. We succeeded to extract each targeted byte of the key of the masked AES with \(7.8\) traces during the attacking phase with a strategy based solely on machine learning models. Finally, we compared our proposal with (1) a stochastic attack, (2) a strategy based on template attack and (3) a multivariate regression attack. We show that an attack based on a machine learning model reduces significantly the number of traces required during the attacking step compared to these profiling attacks when analyzing the same leakage information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.