Abstract

In the field of intelligent transportation systems (ITS), video surveillance is a hot research topic; this surveillance is used in a variety of applications, such as detecting the cause of an accident, tracking down a specific vehicle, and discovering routes between major locations. Object detection and shadow elimination are the main tasks in this area. Object detection in computer vision is a critical and vital part of object and scene recognition, and its applications are vast in the fields of surveillance and artificial intelligence. Additionally, other challenges arise in regard to video surveillance, including the recognition of text. Based on shadow elevation, we present in this work an inner-outer outline profile (IOOPL) algorithm for detecting the three levels of object boundaries. A system of video surveillance monitoring of traffic can be incorporated into this method. It is essential to identify the type of detected objects in intelligent transportation systems (ITS) to track safely and estimate traffic parameters correctly. This work addresses the problem of not recognizing object shadows as part of the object itself in-vehicle image segmentation. This paper proposes an approach for detecting and segmenting vehicles by eliminating their shadow counterparts using the delta learning algorithm (Widrow-Hoff learning rule), where the system is trained with various types of vehicles according to their appearance, colors, and build types. An essential aspect of the intelligent transportation system is recognizing the type of the detected object so that it can be tracked reliably and the traffic parameters can be estimated correctly. Furthermore, we propose to classify vehicles using a machine learning algorithm consisting of artificial neural networks trained using the delta learning algorithm, a high-performance machine learning algorithm, to obtain information regarding their travels. The paper also presents a method for recognizing the number plate using text correlation and edge dilation techniques. In regard to video text recognition, number plate recognition is a challenging task.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.