Abstract

Efforts to develop algorithms that can robustly detect the cessation of seizure activity within scalp EEGs are now underway. Such algorithms can facilitate novel clinical applications such as the estimation of a seizure's duration; the delivery of therapies designed to mitigate postictal period symptoms; or detection of the presence of status epilepticus. In this article, we present and evaluate a novel, machine learning-based method for detecting the termination of electrographic seizure activity. When tested on 133 seizures from a public database, our method successfully detected the end of 132 seizures within 10.3±5.5seconds of the time determined by an electroencephalographer to represent the electrographic end of seizure. Furthermore, by pairing our seizure end detector with a previously published seizure onset detector, we could automatically estimate the duration of 85% of test electrographic seizures within a 15-second error margin compared with electroencephalographer determinations. This article is part of a Supplemental Special Issue entitled The Future of Automated Seizure Detection and Prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.