Abstract

Background and aimsA machine learning algorithm based on circulating metabolic biomarkers for the predictions of neurological diseases (NLDs) is lacking. To develop a machine learning algorithm to compare the performance of a metabolic biomarker-based model with that of a clinical model based on conventional risk factors for predicting three NLDs: dementia, Parkinson’s disease (PD), and Alzheimer’s disease (AD). Materials and methodsThe eXtreme Gradient Boosting (XGBoost) algorithm was used to construct a metabolic biomarker-based model (metabolic model), a clinical risk factor-based model (clinical model), and a combined model for the prediction of the three NLDs. Risk discrimination (c-statistic), net reclassification improvement (NRI) index, and integrated discrimination improvement (IDI) index values were determined for each model. ResultsThe results indicate that incorporation of metabolic biomarkers into the clinical model afforded a model with improved performance in the prediction of dementia, AD, and PD, as demonstrated by NRI values of 0.159 (0.039–0.279), 0.113 (0.005–0.176), and 0.201 (−0.021–0.423), respectively; and IDI values of 0.098 (0.073–0.122), 0.070 (0.049–0.090), and 0.085 (0.068–0.101), respectively. ConclusionThe performance of the model based on circulating NMR spectroscopy-detected metabolic biomarkers was better than that of the clinical model in the prediction of dementia, AD, and PD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.