Abstract

Lytic polysaccharide monooxygenases (LPMOs) have attracted vast attention because of their unique mechanism of oxidative degradation of carbohydrate polymers and the potential application in biorefineries. This study characterized a novel LPMO from Myceliophthora thermophila, denoted MtLPMO9L. The structure model of the enzyme indicated that it belongs to the C1-oxidizing LPMO, which has neither an extra helix in the L3 loop nor extra loop region in the L2 loop. This was confirmed subsequently by the enzymatic assays since MtLPMO9L only acts on cellulose and generates C1-oxidized cello-oligosaccharides. Moreover, synergetic experiments showed that MtLPMO9L significantly improves the efficiency of cellobiohydrolase (CBH) II. In contrast, the inhibitory rather than synergetic effect was observed when combining used MtLPMO9L and CBHI. Changing the incubation time and concentration ratio of MtLPMO9L and CBHI could attenuate the inhibitory effects. This discovery suggests a different synergy detail between MtLPMO9L and two CBHs, which implies that the composition of cellulase cocktails may need reconsideration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.