Abstract

BackgroundAnnual low dose CT (LDCT) screening of individuals at high demographic risk reduces lung cancer mortality by more than 20%. However, subjects selected for screening based on demographic criteria typically have less than a 10% lifetime risk for lung cancer. Thus, there is need for a biomarker that better stratifies subjects for LDCT screening. Toward this goal, we previously reported a lung cancer risk test (LCRT) biomarker comprising 14 genome-maintenance (GM) pathway genes measured in normal bronchial epithelial cells (NBEC) that accurately classified cancer (CA) from non-cancer (NC) subjects. The primary goal of the studies reported here was to optimize the LCRT biomarker for high specificity and ease of clinical implementation.MethodsTargeted competitive multiplex PCR amplicon libraries were prepared for next generation sequencing (NGS) analysis of transcript abundance at 68 sites among 33 GM target genes in NBEC specimens collected from a retrospective cohort of 120 subjects, including 61 CA cases and 59 NC controls. Genes were selected for analysis based on contribution to the previously reported LCRT biomarker and/or prior evidence for association with lung cancer risk. Linear discriminant analysis was used to identify the most accurate classifier suitable to stratify subjects for screening.ResultsAfter cross-validation, a model comprising expression values from 12 genes (CDKN1A, E2F1, ERCC1, ERCC4, ERCC5, GPX1, GSTP1, KEAP1, RB1, TP53, TP63, and XRCC1) and demographic factors age, gender, and pack-years smoking, had Receiver Operator Characteristic area under the curve (ROC AUC) of 0.975 (95% CI: 0.96–0.99). The overall classification accuracy was 93% (95% CI 88%–98%) with sensitivity 93.1%, specificity 92.9%, positive predictive value 93.1% and negative predictive value 93%. The ROC AUC for this classifier was significantly better (p < 0.0001) than the best model comprising demographic features alone.ConclusionsThe LCRT biomarker reported here displayed high accuracy and ease of implementation on a high throughput, quality-controlled targeted NGS platform. As such, it is optimized for clinical validation in specimens from the ongoing LCRT blinded prospective cohort study. Following validation, the biomarker is expected to have clinical utility by better stratifying subjects for annual lung cancer screening compared to current demographic criteria alone.

Highlights

  • Annual low dose CT (LDCT) screening of individuals at high demographic risk reduces lung cancer mortality by more than 20%

  • We previously reported that a lung cancer risk test (LCRT) classfier comprising 14 genes measured in normal bronchial epithelial cells (NBEC) accurately classifies cancer (CA) from non-cancer (NC) subjects [14]

  • Cohort characteristics After filtering measured values to remove those that did not meet the threshold for molecules loaded into library preparation and PCR product loaded into sequencer, we removed five subjects for whom there were results for

Read more

Summary

Introduction

Annual low dose CT (LDCT) screening of individuals at high demographic risk reduces lung cancer mortality by more than 20%. High risk subjects (age 55– 80, 30 or more pack-years smoking, and quit smoking

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.