Abstract
The reflection of light rays by a reference microsatellite of new design, which moves with a velocity of 7500 m/s along a near-Earth orbit with a radius of 835 km, is calculated. The microsatellite is a bilayer Luneburg lens with an outer radius of 85 mm. The process of propagation of electromagnetic radiation in a Luneburg lens is analyzed for the first time with the effects of electrodynamics of moving media and optical glass dispersion taken into account. It is demonstrated that the lens motion leads to additional deflection and mixing of rays with various angles of incidence. The obtained results allow one to improve the accuracy of determination of satellite coordinates and open up new opportunities for tests of the theory of relativity and electrodynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.