Abstract

Tapered piezoelectric beams, because of their more efficiency to generate power, are required to be analyzed by simple models. In this paper, single degree of freedom (SDOF) relations are used to model transvers vibration of an exponentially tapered piezoelectric beam. For this purpose, first, response of the damped cantilevered Euler–Bernoulli beam with base excitation is obtained. Then, lumped parameters of the beam are extracted in order to calculate the SDOF model response. Comparing the Euler-Bernoulli beam model with the SDOF model shows that the lumped parameter model is not accurate enough to predict the beam’s response. Therefore, a tapering parameter dependent correction factor is introduced to adapt a reduced SDOF model. The results of some cases are reported and verified by test. It is concluded that in a tapered beams the accuracy of reduced SDOF model is increased for high tip mass values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.