Abstract

A novel photonic composite film based on a luminescent dicyanodistyrylbenzene-based liquid crystal polymer network (LCN) was fabricated by using a silica colloidal crystal as a template. The upper part of inverse opal structure and the luminescence characteristics of dicyanodistyrylbenzene-based moiety endowed the resulting bilayer photonic film with structural color arising from coherent Bragg reflection and fluorescence properties, respectively. A fluorescence enhancement phenomenon was observed in the photonic film due to the overlap between the reflection band and emission band of the fluorescent LCN. More importantly, the photo-induced irreversible Z/E photoisomerization of dicyanodistyrylbenzene-based moiety in the photonic film led to both a reflection spectral shift and an observable fluorescence variation. On the basis of this effective phototuning process, microscopic patterning of photonic film was developed under both fluorescence mode and reflection mode. The work demonstrated here provides a new route to construct photo-responsive photonic film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.