Abstract
Hypoxia is a hallmark of ischemic cardiovascular diseases and solid malignant tumors. Cellular hypoxia induces numerous physiological and pathological processes, including hematopoiesis, angiogenesis, metabolic changes, cell growth, and apoptosis. Hypoxia-inducible factor-1 (HIF-1) binds to hypoxia response elements (HREs) to selectively induce the expression of various genes in response to hypoxia. Therefore, HREs have been used to develop hypoxia-targeted gene therapy.More than 70 pairs of HREs and hypoxia-inducible genes have been identified. The hypoxia-induced gene expression levels vary among HRE sequences depending on the number of HRE copies and oxygen levels. Most known HREs have not yet been thoroughly studied. Recent studies have revealed that the HRE-mediated effects of hypoxia are cell line-dependent. Herein we describe an in vitro method to investigate gene activation levels and characteristics based on varying the copy number of HREs in response to cellular hypoxia. We explain how to clone HREs into luciferase reporter constructs in the sense, antisense, and dual directions to measure luciferase expression for functional analyses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.