Abstract

Low-temperature autoclaving has been demonstrated to synthesize monolithic carbon materials with an ordered mesostructure by using triblock copolymer F127 as template, and resorcinol/formaldehyde resol as carbon precursor under acidic conditions. Transmission electron microscopy, small angle X-ray scattering, Fourier transform infrared spectroscopy and nitrogen adsorption measurements show that the crack-free carbon monoliths have a 2-D hexagonal pore system, a uniform pore size of ∼5.0nm and a high surface area of ∼675m2g−1. The macroscopic morphology can be tuned by changing the diameter of the autoclave. The influence of the synthesis conditions including the autoclaving treatment time and the molar ratio of formaldehyde (F) to resorcinol (R) are discussed. It is found that while the F/R molar ratio ⩽2 and the autoclaving treatment time ⩾2d, highly ordered mesoporous carbon monoliths can be obtained. In comparison, monolithic mesoporous carbon materials prepared through an evaporation-induced self-assembly strategy are partly cracked with a disordered wormhole-like mesostructure, suggesting that low-temperature autoclaving is an efficient way to prepare crack-free monolithic carbon materials with an ordered mesostructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.