Abstract
We present a low-profile, mechanically beam-steerable antenna that implements the Risley prism beam-steering concept using only a single flat prism. The proposed antenna achieves 2-D beam steering and consists of two parts: a holographic leaky-wave antenna and a phase-shifting surface (PSS) that acts as a flat prism. The lower holographic leaky-wave antenna acts as the feed for the prism and provides a phase-shifting gradient over its output aperture. When paired with the flat prism, the system can provide 2-D beam steering by mechanically rotating the two layers against each other. Unlike conventional Risley-prism-based beam-steerable antennas, the proposed approach results in a very low-profile antenna and does not need spatial illumination of a two-prism system with a separate feed antenna. The flat prism is implemented using a PSS consisting of low-pass, hexagonal-shaped, spatial phase shifters. A prototype antenna with an overall thickness of only <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$1.1\lambda _{0}$ </tex-math></inline-formula> at 10 GHz was designed, fabricated, and experimentally characterized. Measurement results agree well with theoretical predictions and both show wide-angle beam scanning ranging from 0° to 57° in the elevation plane and 0° to 360° in the azimuth plane. The proposed antenna system has an equivalent aperture diameter of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$7.1\lambda _{0}$ </tex-math></inline-formula> and a measured peak gain of 22.3 dBc at 10 GHz corresponding to an aperture efficiency of 34.5%. The proposed concept is expected to be useful in designing low-profile, beam-steerable antennas in which the scanning speed can be traded off to reduce system complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.