Abstract

A low-profile differentially fed dual-polarized antenna with high gain and isolation is proposed for fifth-generation (5G) microcell communications. By introducing two pairs of symmetrical meandering conductors to connect both ends of the radiating cross slots, a compact-size antenna with wide bandwidth can be achieved. By further adopting an artificial magnetic conductor-backed (AMC) reflector that is arranged below the radiating patches with a distance of 6 mm, the antenna profile can be reduced from $0.25\lambda _{c}$ to $0.13\lambda _{c}$ (where $\lambda _{c}$ is the free-space wavelength at the center frequency), while both the gain and frequency bandwidth are also enhanced. Furthermore, owing to the orthogonal differentially fed structure, the antenna element displays a high port isolation of 37 dB. Finally, by meticulously designing the feeding network, much narrower beamwidth can be yielded, and hence, the unidirectional gain is further improved. The measured results show that a lower-frequency bandwidth of 13.5% (3.26–3.73 GHz) with a gain of 15.7 ± 0.1 dBi and upper-frequency bandwidth of 7.6% (4.68–5.05 GHz) with 15.55 ± 0.05 dBi gain can be obtained by the proposed antenna array. In addition, port isolation better than 28 dB and stable radiation patterns can be achieved. With the aforementioned characteristics, the proposed antenna is a good candidate for future 5G microcell communications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.